• HOME
  • Aircraft
    • AIRFRAMES
      • Proud to fly a Turboprop: Q400 vs ATR72
      • Airbus A320 Experience
    • SYSTEMS
      • Pratt and Whitney PW1100G Geared Turbofan Engine
      • Winglets and Sharklets
      • Cockpit Design: EPR v/s N1 indication
      • Boeing’s MAX, Southwest’s 737
      • GPS to the rescue!
    • ACCIDENTS AND INCIDENTS
      • LOT 767 Gear Up Landing
      • Iran Air 743:Partial Gear Up Landing
  • AIRLINE
    • ANALYSIS
      • IndiGo performs well in Q3’16, but is outshone by Q1’16
      • SpiceJet: Q1’16 Operational Financials Forecast
      • Vistara – Review & Analysis
      • AirAsia India – Q2FY15 performance and outlook
      • Q2 results and Prof. Sanjiv Kapoor’s introductory class on Airline Economics
      • SpiceJet in Q(2) – Great Performance in Testing Times.
      • Could SpiceJet have been profitable in FY2013-14?
      • Interlysis – AirAsia India and Mrithyunjaya Chandilya
      • A glimpse of Tony’s AirAsia India, and his success mantra
      • Interlysis with Shyson Thomas – Air Pegasus, Unplugged.
    • EVENTS
      • AirAsia India-and the competition-gets real
      • Spicejet’s inaugural Bangalore-Bangkok Run
      • Spicejet unveils the Q400s
    • HUMAN FACTORS
      • Dissatisfied Flightcrew
      • Love is in “the air”
      • Captain Dad and kid First Officer
      • Cathay’s Young Cabin Crew!
  • AVIATION
    • The Indian Aviation 2015 growth story deciphered
    • National Civil Aviation Policy 2015
      • Safety
      • Regional Connectivity Scheme (RCS)
      • The 5/20 Rule
      • Route Dispersal Guidelines
      • Scheduled Commuter Airlines (SCAs)
      • Aviation Education & Skill Development
    • 2014: A year flown by
    • 2013: A year flown by
    • Training
      • Familiarization Flights for ATCOs
      • A320 FFS LOFT Session
      • HINDUSTAN GROUP OF INSTITUTIONS: AN AVIATION UNIVERSITY
        • Hindustan Institute of Engineering and Technology (HIET)
        • Hindustan Institute of Technology & Science (HITS): Hindustan University
        • Orient Flight School (OFS)
      • IGRUA
      • NFTI: Rising to the Top, and how
      • Aerospace Engineering in India: the Gaps
      • Chief Flying Instructors
    • PEOPLE
      • Radka Máchová
      • Rodrigo David: The man behind some of the best A320 flightdeck videos
    • TECHNOLOGY
      • GAGAN: India’s first step to a Future Air Navigation System (FANS)
  • PROJECTS
    • AIRBUS TECH
      • About PAT
      • AIRCON/PRESSURIZATION/VENTILATION
      • AUTOFLIGHT
      • COMMUNICATION SYSTEMS
      • ELECTRICAL SYSTEMS
      • FIRE PROTECTION SYSTEMS
      • FLIGHT CONTROLS
      • FUEL SYSTEMS
      • HYDRAULIC SYSTEMS
      • ICE AND RAIN PROTECTION
      • LANDING GEAR
      • LIGHTS
      • OXYGEN
      • PNEUMATICS
      • APU
      • DOORS
      • POWER PLANT (IAE)
    • ATR9X
      • About ATR 9X
      • Logbook
      • Introduction
      • Fuselage
    • General Aviation Flight Simulator
    • Dual Cyliner Rotax Electronic Engine-Kill Switch
    • Making a Lynx Micro Headset Charger on the Go!
  • ABOUT
    • About The Flying Engineer
    • Advertising
    • Merchandise

The Flying Engineer

~ Technically and Operationally Commercial Aviation

The Flying Engineer

Tag Archives: WAAS

GAGAN Readiness: G1000 with GIA 63W (Diamond DA40NG)

20 Monday Jan 2014

Posted by theflyingengineer in Flight Safety, Technical

≈ Leave a comment

Tags

40, 63W, aircraft, DA, Diamond, EGNOS, G1000, GAGAN, Garmin, GIA, GPS, IAU, MSAS, NG, Page, WAAS

G1000_SBAS03_Map

Gagan LogoWith the Indian GAGAN (GPS-aided geo-augmented navigation) system expected to be fully operational by year end, The Flying Engineer visited a Diamond DA40NG today, at Bangalore, to check if the aircraft was SBAS (Satellite Based Augmentation System) enabled, and how GPS information is presented.

GPS is the acronym for the Navstar Global Positioning System, a space-based radio navigation system owned by the United States Government (USG) and operated by the United States Air Force (USAF). Due to its global availability, the Navstar GPS is a Global Navigation Satellite System (GNSS).

A SBAS system, in principle, detects errors responsible for low accuracy and integrity of GPS receiver positions, and broadcasts those errors via geostationary satellites. SBAS enabled GPS receivers apply these corrections, to compute a more accurate GPS position, with 99.99999% certainty. Sources of errors include the satellite (timing errors), and signal propagation delay (as it passes through the ionosphere). Satellite errors are applicable worldwide, but ionosphere errors are location specific.

The Garmin G1000 system relies on the GIA 63 IAU (Integrated Avionics Unit), which functions as the main communications hub, linking all other units (LRUs) with the PFD. Each IAU contains a GPS receiver, a very high frequency (VHF) G1000_SBAS01communication/navigation/glideslope (COM/NAV/GS) receiver, and system integration microprocessors. The GIA 63W (Note the extra “W”) contains a GPS WAAS receiver. WAAS is the United States’ SBAS.

Although labeled as a WAAS receiver, the unit can receive satellite corrections from other operational SBAS as well: Europe’s EGNOS, and Japan’s MSAS, as seen in the photo on the left.

When GAGAN becomes fully operational, supporting ILS CAT-I like GPS approaches, Garmin International is expected release a navigation database update cycle that will allow the Garmin G1000 display units to list the GAGAN system under “SBAS Selection”. It may then be prudent to de-select WAAS, EGNOS and MSAS, and select only GAGAN.

G1000_SBAS02The GPS Signal Strength box, as seen in the GPS Status page, in the photo on the right, shows the GPS satellites (these satellites have a code, called a PRN (Pseudo Random Noise), between 1 and 32), and the SBAS satellites (124, 126, 129). Satellite 124 is Artemis (EGNOS), 126 is INMAR3F5 (EGNOS), and 129 is MTSAT1R (MSAS).

GAGAN’s SBAS satellites, GSAT-8 and GSAT-10, will be seen as satellites with PRN 127 and 128, respectiely.

The green bars show satellites that are actually being used in the position calculation, the height of the bar proportional to the signal strength. The blue bar shows satellite 25 is locked on but not yet being used in the position calculation. The hollow signal strength bars for satellites 31, 126 and 129 show that the receiver has found the satellite and is collecting data, before the satellite may be used for navigation, and the bar becomes solid. No signal strength bar, as seen for satellite124, shows that the receiver is looking for the indicated satellite.

SBAS CrudeThe “D” indication on signal strength bar shows that the satellite is being used for differential computations. The differential computations, which is the consideration of the “error” to improve positional accuracy, is based on transmissions from EGNOS and MSAS. Since India is not in the intended geographical coverage area of EGNOS or MSAS (see image above, courtesy AAI), Ionosphere corrections are unavailable, but satellite error corrections, which are globally valid, are available, and being used.

With these corrections, the Estimated Position Uncertainty (EPU): the radius of a circle centered on the GPS estimated horizontal position in which actual position has 95% probability of lying, is 0.05NM, as seen in the Satellite Status Box.

The Horizontal and Vertical Figures of Merit (HFOM and VFOM), seen as 23ft and 33ft respectively, is the current 95% confidence horizontal and vertical accuracy values reported by the GPS receiver.

Based on GAGAN’s trials by the Airport Authority of India (AAI), the observed accuracies are 3ft horizontal and 5ft vertical: a dramatic increase in positional accuracy, which the same aircraft will observe when the GAGAN is switched on for civilian use: something that is hoped to happen by the end of Jan 2014, as per the AAI General Manager (CNS) heading the Ground Based Elements of the GAGAN Project at Bangalore, India.

Preparing for GAGAN: SBAS vs Non-SBAS Receiver

11 Saturday Jan 2014

Posted by theflyingengineer in Flight Safety, General Aviation Interest, Technical

≈ 4 Comments

Tags

EGNOS, GAGAN, Garmin, GPS, MSAS, Nokia, Receiver, SBAS, WAAS

GAGAN's GSAT 8 (closer to Africa) and GSAT 10 provide the SBAS correction & integrity signals.

GAGAN’s GSAT 8 (closer to Africa) and GSAT 10 provide the SBAS correction & integrity signals.

With the GPS Aided GEO Augmented Navigation (GAGAN; Indian term for the country’s SBAS system) availability just a few days away, excitement is in the air, especially those who realize the benefits of the Satellite Based Augmentation System (SBAS) and the benefits it brings to aviation applications.

Today, we get to see the Wide Area Augmentation System (WAAS; US term for their SBAS system) as an option on a high sensitivity WAAS enabled Garmin receiver, and how it compares with a non-specialized commercial grade GPS receiver (A Nokia E-72 was used for this).

The Garmin unit picked up 11 Satellites, while the Nokia E72 picked up only 8 (blue bars).

The Garmin unit picked up 11 Satellites, while the Nokia E72 picked up only 8 (blue bars). Note that the Nokia GPS cannot receive signals from satellites beyond #32.

The Garmin handheld unit (eTrex-H, now a discontinued model from Garmin, but used by many for aviation applications, though not certified for such use) features a high sensitivity receiver. With higher sensitivity, it can pick up weak GPS signals, which are too weak for standard sensitivity GPS receivers to pick up. As a result, it receives signals from more satellites, making the reported position very accurate and stable. (with a 3 meter accuracy, you can be assured of landing within 10ft on either side of a runway centreline)

The Garmin Unit's accuracy was rock solid stable at 3 meters, while the Nokia's accuracy fluctuated, and came nowhere close.

The Garmin Unit’s accuracy was rock solid stable at 3 meters, while the Nokia’s accuracy fluctuated, and came nowhere close.

In addition, the Garmin eTrex-H also has a the ability to receive signals from ANY SBAS satellite, and apply the necessary corrections to make the signals more accurate. Considering that the GPS unit already has an accuracy of 3m, it may be unlikely that a greater accuracy may be noticed with the WAAS system, although the corrections will be applied. This is because, closer to the equator, the ionosphere introduces a lot many errors, which disturb the GPS signals. An SBAS attempts to provide a 7 meter accuracy; anything better than that must be treated purely as a bonus!

WAAS ellitenabled, and the Garmin unit looking for Satellite 39 from EGNOS

WAAS ellitenabled, and the Garmin unit looking for Satellite 39 from EGNOS

In the settings, WAAS was enabled, and as a result, the Garmin GPS unit received satellite number 37 (Jan 10) and 39 (Jan 11). A standard non-WAAS / SBAS receiver will not see more than 32 satellites. GPS satellites have a PRN (Pseudo Random Noise code that allows the receiver to decode that specific satellite’s information) between 1 and 32, both inclusive. Any satellite beyond 32 is a SBAS Satellite, part of WAAS, EGNOS (the European Geostationary Navigation Overlay Service),  MSAS (Multi-functional Satellite Augmentation System (Japanese)), or, as will be seen in a few days, the GAGAN system’s. Satellite numbers 37 and 39 are from the European EGNOS, but the corrections received will not be applied by the receiver as the satellite signals specify the area of applicability.

The GAGAN system’s satellites, with a PRN of 127 (GSAT-8) and 128 (GSAT-10), will appear as satellites 40 and 41, respectively, on a GPS receiver. Both satellites transmit the same information. That satellite from which the GPS receiver receives stronger signals will be selected. For Bangalore, this is GSAT-10 (Seen on the GPS receiver as 41).

The excitement is building!

Referred by:

Referred by:

Project:

Project:

In Depth Articles:

In Depth Articles:

In Depth Articles:

RSS Feed

RSS Feed RSS - Posts

RSS Feed RSS - Comments

The Flying Engineer’s tweets

  • High high twitter.com/jagritichandra… 1 hour ago
  • @TheSanjivKapoor @imdeepakrajawat @capa_india If I have seen further, it is by standing on the shoulders of giants. 🙏 16 hours ago
  • @Vinamralongani @NandaNidarshan @OfficialStarAir @embraer Embraer's MSNs include the model family. Thai way just by… twitter.com/i/web/status/1… 3 days ago
  • BE LIKE ENVOY. twitter.com/envoyaircareer… 6 days ago
  • You can argue, "If the middle seat is empty, that's awesome". Yes, for the passenger. Not for the bean counter. Mid… twitter.com/i/web/status/1… 1 week ago
Follow @TheFlyingEnggnr

Visit our Facebook Page

Visit our Facebook Page

Blog archives of The Flying Engineer

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 17,611 other subscribers

Site Statistics

  • 2,468,037 views

Top Posts & Pages

  • Pratt and Whitney PW1100G Geared Turbofan Engine
    Pratt and Whitney PW1100G Geared Turbofan Engine
  • Cockpit Design: EPR v/s N1 indication
    Cockpit Design: EPR v/s N1 indication
  • Winglets and Sharklets
    Winglets and Sharklets
  • Proud to fly a Turboprop: Q400 vs ATR72
    Proud to fly a Turboprop: Q400 vs ATR72
  • FUEL SYSTEMS
    FUEL SYSTEMS
  • POWER PLANT (IAE)
    POWER PLANT (IAE)
  • On the A320 Neo, if you're unlucky, you've got the last row
    On the A320 Neo, if you're unlucky, you've got the last row
  • AUTOFLIGHT
    AUTOFLIGHT
  • HYDRAULIC SYSTEMS
    HYDRAULIC SYSTEMS
  • AIRCON/PRESSURIZATION/VENTILATION
    AIRCON/PRESSURIZATION/VENTILATION

Recent Posts!

  • IndiGo receives its first Airbus A320neo at Toulouse
  • On the A320 Neo, if you’re unlucky, you’ve got the last row
  • Why the FIA’s case against the removal of the 5/20 rule is unjustified
  • Why the 90 seat Q400 had to be announced at the Singapore Air Show
  • Analysing IndiGo’s performance in Q3’16
  • Deciphering the 2015 Indian Aviation growth story
  • Air Costa receives its third Embraer E190 at Jordan
  • Why Jet Airways meant much for Brussels
  • Same aircraft family, different hands: Boeing 737NG flown by the Air Force and an airline
  • IndiGo to fly India’s longest daily domestic flight effective 7th January 2016

Blog at WordPress.com.

  • Follow Following
    • The Flying Engineer
    • Join 396 other followers
    • Already have a WordPress.com account? Log in now.
    • The Flying Engineer
    • Customize
    • Follow Following
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...